

Performance Investigation of a Dual-Source Heat Pump for a Swine Nursery Barn in Northern Italy

George Meramveliotakis¹, Dimitrios Tyris², Apostolos Gkountas³, Panteleimon Bakalis³, Stefano Benni⁴, Francesco Tinti⁴, Dimitris Manolakos²

> ¹THERMODRAFT IKE, Piraeus, Greece ²Agricultural University of Athens, Athens, Greece ³PSYCTOTHERM, Piraeus, Greece ⁴University of Bologna, Bologna, Italy

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Introduction

General Context

European Environment Agence (EEA). Greenhouse gas emissions from energy use in buildings in Europe. 24 Oct 2023: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-energy • Buildings contribute to ~40% of global carbon emissions – decarbonizing heating is crucial.

•Heat pumps (HPs) are efficient electric devices gaining momentum due to government initiatives to more sustainable solution.

Introduction

Focusing on livestock buildings...

- Major source of greenhouse gas (GHG) emissions, especially intensive livestock and husbandry facilities due to:
 - High energy consumption
 - Extensive use of fossil fuels

Replace current technologies with reliable RES solutions to consume less energy and improve the thermal conditions

Introduction

Scope of the work

Replacement of a 35 kW LNG boiler of a With nursery barn

Nursery Barn in Northern Italy

- Multisource (air/water) heat pump with hybrid operation
- Medium temperatures (up to 45 oC) for higher COP
- Sources: Geothermal and solar for water | Aircooled evaporator

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Cycle Design Parameters

- Refrigerant R407C
- Condensing temperature: 58 °C
- Evaporating temperature: 13 °C
- Superheat / subcooling: 10 K / 5 K

Temperature (°C)

20 / 15

45 / 55

• Pinch point: 3 K

Water/ glycol

flow

Evaporator

(in / out)

Condenser

(in / out)

• Specified water flowrates

Plate HEXs used for efficient heat transfer:

Heat exchanger	Model	Plates	Surface (m ²)	
Condenser	B85H	100	5.88	Ī
Evaporator	B80H	80	4.68	

Inlet temperature

Outlet temperature

Superheating

Evaporation temperature (dew)

DUTY REQUIREMENTS Side 1 Side 2 Fluid R407C Water Flow type Counter-Current Condenser Circuit Inner Outer kW Heat load 45,15 Inlet vapor quality 1,000 Outlet vapor quality 0,000 Inlet temperature °C 70.00 45.00 Condensation temperature (dew) °C 58,00 Subcooling Κ 2,00 °C 51,83 55,00 Outlet temperature Side 1 Side 2 DUTY REQUIREMENTS Fluid R407C Ethylene Glycol - Water (20,0 mass%) Flow type Counter-Current Circuit Inner Outer Evaporator Heat load kW 35,10 Subcooled lig. temp. °C 43.00 Inlet vapor quality 0,268 Outlet vapor quality 1,000

°C

°C

Κ

°C

9,00

13,00

5,00

18,00

Design conditions

20,00

15,00

System design

Air heated evaporator

Air of $0^{\circ}C$

CAPACITY OBTAINED	18677	W
EXHANGE SURFACE	60.12	m²
EXCHANGE GLOBAL COEFFICIENT	46	W/(m ² K)
FINS THICKNESS	0.2200	mm
COIL INSIDE VOLUME	7.3	l
TUBES OUTSIDE DIAMETER	12.7	mm
TUBES INSIDE DIAMETER	11.7	mm

Final design		
2 fans with fan- speed control	PERFOR	MANCE AT SPECIFIED OPERATING POINT ZRD125KCE-TFD Data at 50 Hz
Nano-zinc anticorrosion	Cooling Capacity, kW	35.10
Accumulator evaporator	Power, kW	10.05
and subcooler	COP	3.49
	Current at 400 V, A	17.60
	Suction Mass Flow, g/s	234.00
	Heating Capacity, kW	44.60
Digital secol	Isentropic Eff., %	72.46
compressor with 10- 100% capacity control		
	Compressor Selected	ZRD125KCE-TFD

poratura Control Comparison

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Methodology

Measured values

Parameter (units) Electricity consumption of the compressor (net) (kW) Electricity consumption of the auxiliary parts (kW) Inlet temperature at the water side of the evaporator (°C) Outlet temperature at the water side of the evap. (°C) Inlet temperature at the water side of the condenser (°C) Outlet temperature at the water side of the cond. (°C) Refrigerant pressure at the discharge line (bar) Refrigerant pressure at the suction line (bar) Water flow at the evaporator side (m³/h) Water flow at the condenser side (m³/h) Outdoor temperature (°C)

Symbol \dot{w}_{comp}

ώ_{aux} T_{w,evap,in}

T_{w,evap,out}

T_{w,cond,in} T_{w,cond,out} P_{discharge}

P_{suction}

V_{w,evap}

V_{w,cond} T_{outdoor}

Testing conditions

- Water temperatures at evaporator: 8 20 °C.
- Water temperatures at condenser: 30 50 °C
- Compressor capacity variation: 20 100%

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Conclusions

Experimental results – Water source

T_{evap.in} ~10 - 20 °C
 T_{cond,in} ~20 - 50 °C

- Condensation load and COP for capacity variation when pressure ratio is about 4:
- \circ 100% capacity: Q_{cond}~32 kW, COP=5
- \circ $\,$ 80% capacity: $Q_{cond}{\sim}25$ kW, COP=3.9 $\,$
- o 60% capacity: Q_{cond} ~15 kW, COP=3.0
- o 20% capacity: $Q_{cond} \sim 9$ kW, COP=4.2

Experimental results – Air source

T_{outdoor} ~15 - 20 °C
 T_{cond,in} ~20 - 50 °C

□ Condensation load and COP for capacity variation when pressure ratio 2 – 5:

- 100% capacity: $\dot{Q}_{cond} > 30 \ kW$, COP = 3.0 4.3
- 80% capacity: $\dot{Q}_{cond} _{\sim 25} _{-30} kW$, COP = 2.3 4.0
- o 60% capacity: $\dot{Q}_{cond} \ _{\sim} 20} kW$, COP = 2.0 4.0
- o 20% capacity: $\dot{Q}_{cond \sim 9} kW$, COP = 3.0

Experimental results – Hybrid mode

T_{outdoor} ~15 - 20 °C
 T_{cond.in} ~20 - 50 °C
 T_{evap,in} ~10 °C
 100% Capacity

- High outdoor temperature during tests, results to modest enhancements in COP between hybrid and air mode: COP 4.5 (hybrid) vs 4.1 (air) in lower pressure ratios (3.5 – 4).
- Hybrid operation \rightarrow Increased power consumption (fans, pumps etc.)
- Hybrid operation \rightarrow 8 kWth capacity increment (~25% \uparrow)
- Water operation \rightarrow Highest COP

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Seasonal COP

- ✤ According to EN 14825 for water-source (geothermal heat pumps)
- For "Average" temperature zone (Medium temp application)

Evaporator inlet: 10 °C Condenser outlet: 45 °C

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Digital capacity operation

0

Ο

Ο

Ο

Digital capacity operation

Conclusions

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Conclusions

- Water source at full load \rightarrow over 30 kW heating capacity with COP up to 5.
- Air source at full load \rightarrow 30 kW heating capacity with COP range between 3 and 4.
- Hybrid mode: Similar COP with air source for temperatures at 15 °C but with enhanced heating capacity (>25% compared to Water/Air mode).
- Average climate zone and Medium temperature applications result to a **SCOP of 4.08** for water source operation.
- Digital capacity modulation: Variation of heating capacity between 9 32 kW with COP 2 5.
 Enhanced system performance compared to standard scroll due to:
 - ✓ Precise temperature control according to the load match capacity to demand.
 - ✓ Reduce the on off cycling, less mechanical stress and effective lubrication.
 - ✓ Efficient part load operation, reducing the capacity up to 80% without stopping completely.

Thank you for your attention!

Acknowledgment

This work developed in the framework of the Horizon 2020 RES4LIVE: "Energy Smart Livestock Farming towards Zero Fossil Fuel Consumption" project (<u>www.res4live.eu</u>) funded by the European Commission (Grant agreement No.101000785).

Performance Investigation of a Dual-Source Heat Pump for a Swine Nursery Barn in Northern Italy

George Meramveliotakis¹, Dimitrios Tyris², Apostolos Gkountas³, Panteleimon Bakalis³, Stefano Benni⁴, Francesco Tinti⁴, Dimitris Manolakos²

> ¹THERMODRAFT IKE, Piraeus, Greece ²Agricultural University of Athens, Athens, Greece ³PSYCTOTHERM, Piraeus, Greece ⁴University of Bologna, Bologna, Italy