

Performance Investigation of a Dual-Source Heat Pump for a Swine Nursery Barn in Northern Italy

George Meramveliotakis¹, Dimitrios Tyris², Apostolos Gkountas³, Panteleimon Bakalis³, Stefano Benni⁴, Francesco Tinti⁴, Dimitris Manolakos²

> THERMODRAFT IKE, Piraeus, Greece Agricultural University of Athens, Athens, Greece PSYCTOTHERM, Piraeus, Greece University of Bologna, Bologna, Italy

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

- **Introduction**
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Introduction

General Context

European Environment Agence (EEA). Greenhouse gas emissions from energy use in buildings in Europe. 24 Oct 2023: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-energy • **Buildings contribute to ~40% of global carbon emissions – decarbonizing heating is crucial.**

• **Heat pumps (HPs) are efficient electric devices gaining momentum due to government initiatives to more sustainable solution.**

Introduction

Focusing on livestock buildings…

- **Major source of greenhouse gas (GHG) emissions, especially intensive livestock and husbandry facilities due to:**
	- High energy consumption
	- Extensive use of fossil fuels

Replace current technologies with reliable RES solutions to consume less energy and improve the thermal conditions

Introduction

Scope of the work

Replacement of a 35 kW LNG boiler of a nursery barn **With**

Nursery Barn in Northern Italy

- Multisource (air/water) heat pump with **hybrid** operation
- Medium temperatures (up to 45 oC) for higher COP
- Sources: Geothermal and solar for water | Aircooled evaporator

- Introduction
- **System design and description**
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Cycle Design Parameters

- **Refrigerant R407C**
- Condensing temperature: 58 °C
- Evaporating temperature: 13 °C
- Superheat / subcooling: 10 K / 5 K

flow Temperature (

• Pinch point: 3 K

Water/ glycol

Evaporator

Condenser

• Specified water flowrates

Plate HEXs used for efficient heat transfer:

DUTY REQUIREMENTS Side 1 Side 2 Fluid **R407C** Water **Flow type Counter-Current** Condenser Circuit Outer Inner kW **Heat load** 45,15 Inlet vapor quality 1,000 0,000 Outlet vapor quality °C 70,00 Inlet temperature 45.00 Condensation temperature (dew) °C 58,00 Κ 2,00 Subcooling $^{\circ}C$ 51,83 55,00 Outlet temperature **DUTY REQUIREMENTS** Side 1 Side 2 Fluid **R407C Ethylene Glycol** - Water (20,0 $mass\%)$ Flow type **Counter-Current** Circuit Inner Outer Evaporator Heat load kW 35,10 Subcooled liq. temp. $^{\circ}$ C 43,00 Inlet vapor quality 0,268 Outlet vapor quality 1,000 Inlet temperature °C 9,00 20,00 Evaporation temperature (dew) °C 13,00 Superheating Κ 5,00 °C Outlet temperature 18,00 15,00

Design conditions

System design

Air heated evaporator

Air of 0°C

- Introduction
- System design and description
- **Methodology**
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- Conclusions

Methodology

Measured values

Parameter (units) Symbol Electricity consumption of the compressor (net) (kW) Electricity consumption of the auxiliary parts (kW) Inlet temperature at the water side of the evaporator (°C) Outlet temperature at the water side of the evap. (°C) Inlet temperature at the water side of the condenser (°C) Outlet temperature at the water side of the cond. (°C) Refrigerant pressure at the discharge line (bar) Refrigerant pressure at the suction line (bar) Water flow at the evaporator side (m^3/h) Water flow at the condenser side (m^3/h) Outdoor temperature (°C)

 \dot{W}_{comp} \dot{w}_{aux} $T_{w,evap,in}$

 $T_{w,evap,out}$

 $T_{w, cond,in}$ $T_{w, cond,out}$ $P_{discharge}$ P_{suction}

 $\dot{V}_{w,evap}$

 $\dot{V}_{w,cond}$

 $T_{outdoor}$

Testing conditions

- o Water temperatures at evaporator: $8 20$ °C.
- o Water temperatures at condenser: $30 50$ °C
- o Compressor capacity variation: 20 100%

- Introduction
- System design and description
- Methodology
- **Experimental results**
- Seasonal Coefficient Of Performance
- Conclusions

Experimental results – Water source

■ $T_{evap,in}$ ~10 – 20 °C ■ $T_{cond,in}$ ~20 – 50 °C

❑ Condensation load and COP for capacity variation when pressure ratio is about 4:

- o 100% capacity: $Q_{cond} \sim 32$ kW, COP=5
- \circ 80% capacity: Q_{cond}~25 kW, COP=3.9
- \circ 60% capacity: Q_{cond} \sim 15 kW, COP=3.0
- \circ 20% capacity: Q_{cond}~9 kW, COP=4.2

Experimental results – Air source

 \bullet **T**_{outdoor} ~15 – 20 °C \bullet **T**_{cond, in} ~20 – 50 °C

❑ Condensation load and COP for capacity variation when pressure ratio $2 - 5$:

- o 100% capacity: $\dot{Q}_{cond} > 30 \; kW$, $COP = 3.0 4.3$
- o 80% capacity: $\dot{Q}_{cond\sim 25\ _30}$ kW, $COP = 2.3 4.0$
- o 60% capacity: \dot{Q}_{cond_20} kW, $COP = 2.0 4.0$
- o 20% capacity: \dot{Q}_{cond_9} kW, $COP = 3.0$

Experimental results – Hybrid mode

▪ **Τoutdoor ~15 – 20 ^oC** ▪ **Tcond,in ~20 – 50 ^oC** ▪ **Τevap,in ~10 ^oC** ▪ **100% Capacity**

- o High outdoor temperature during tests, results to modest enhancements in COP between hybrid and air mode: COP 4.5 (hybrid) vs 4.1 (air) in lower pressure ratios $(3.5 - 4)$.
- o Hybrid operation \rightarrow Increased power consumption (fans, pumps etc.)
- o Hybrid operation \rightarrow 8 kWth capacity increment (~25% \uparrow)
- \circ Water operation \rightarrow Highest COP

- Introduction
- System design and description
- Methodology
- Experimental results
- **Seasonal Coefficient Of Performance**
- Digital capacity operation
- Conclusions

Seasonal COP

- ❖ According to EN 14825 for **water-source** (geothermal heat pumps)
- ❖ For "Average" temperature zone (Medium temp application)

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- **Digital capacity operation**
- Conclusions

Digital capacity operation

Digital capacity operation

Conclusions

- Introduction
- System design and description
- Methodology
- Experimental results
- Seasonal Coefficient Of Performance
- Digital capacity operation
- **Conclusions**

Conclusions

- \circ Water source at full load \rightarrow over 30 kW heating capacity with COP up to 5.
- o Air source at full load \rightarrow 30 kW heating capacity with COP range between 3 and 4.
- o Hybrid mode: Similar COP with air source for temperatures at 15 °C but with enhanced heating capacity (>25% compared to Water/Air mode).
- o Average climate zone and Medium temperature applications result to a **SCOP of 4.08** for water source operation.
- \circ Digital capacity modulation: Variation of heating capacity between 9 32 kW with COP 2 5. Enhanced system performance compared to standard scroll due to:
	- \checkmark Precise temperature control according to the load match capacity to demand.
	- \checkmark Reduce the on off cycling, less mechanical stress and effective lubrication.
	- ✓ Efficient part load operation, **reducing the capacity up to 80% without stopping completely**.

SUSTAINABLE BOUNDLESS INNOVATION

Thank you for your attention!

Acknowledgment

towards Zero Fossil Fuel Consumption" project [\(www.res4live.eu\)](http://www.res4live.eu/) funded by the European Commission This work developed in the framework of the Horizon 2020 RES4LIVE: "Energy Smart Livestock Farming (Grant agreement No.101000785).

Performance Investigation of a Dual-Source Heat Pump for a Swine Nursery Barn in Northern Italy

George Meramveliotakis¹, Dimitrios Tyris², Apostolos Gkountas³, Panteleimon Bakalis³, Stefano Benni⁴, Francesco Tinti⁴, Dimitris Manolakos²

> THERMODRAFT IKE, Piraeus, Greece Agricultural University of Athens, Athens, Greece PSYCTOTHERM, Piraeus, Greece University of Bologna, Bologna, Italy