

On farm production and direct upgrading of biogas to Bio-CNG

Lukas Wannasek

Detlef May, Thomas Amon, Christian Ammon

Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Potsdam, Germany

The 75th EAAP Annual Meeting Florence | 3rd Sept. 2024

RES4LIVE Project

- **Project title:** RES4LIVE Energy Smart Livestock Farming towards Zero Fossil Fuel Consumption
- Work package 1: Adaptation of innovative RES technologies for livestock farms
- Grant agreement: 101000785 (H2020)

From October 2020 to September 2024

• Result (2024): EU Innovation Radar designated project highlight

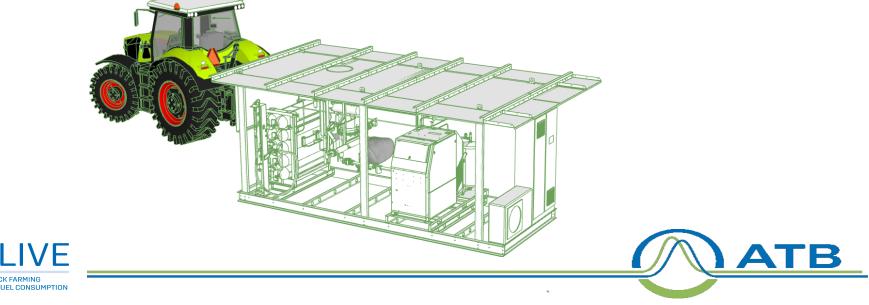
Task Overview

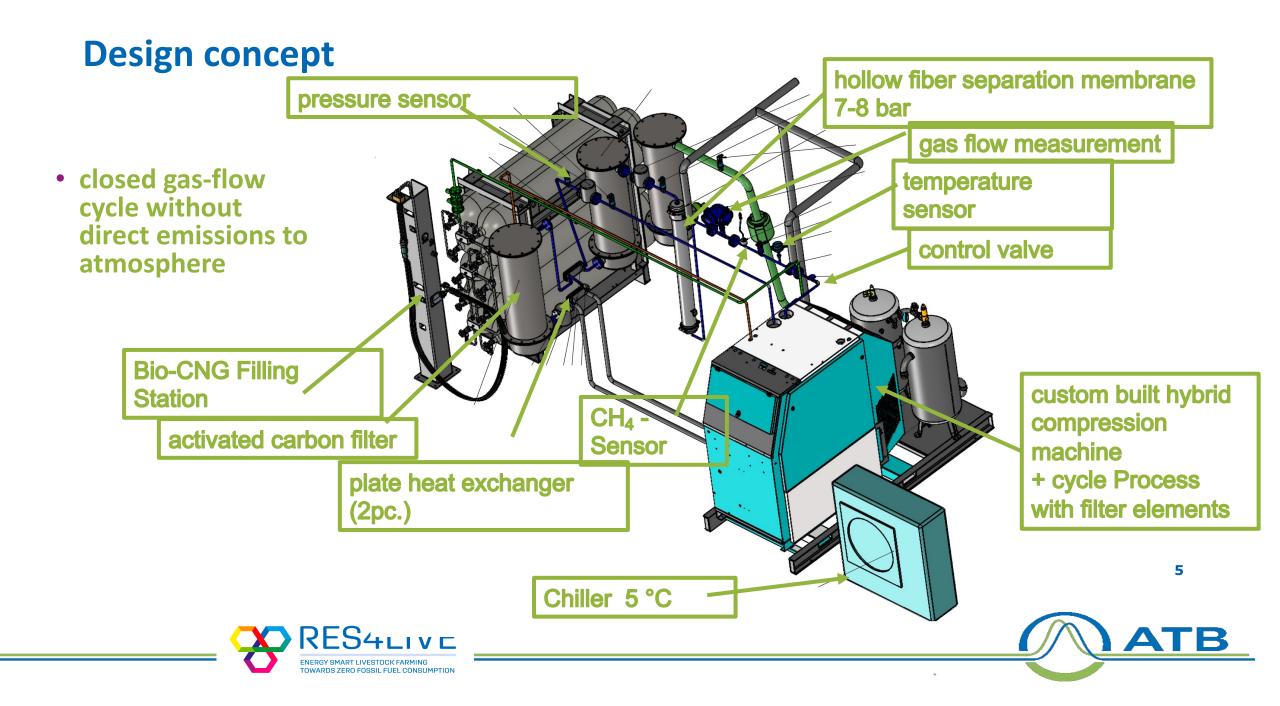
 Objective: adaption of a biogas upgrading kits specifically for biogas coming from manure of livestock farms (e.g. cattle, swine) with a focus on its cost-effectiveness at medium and small scales

• Key innovations:

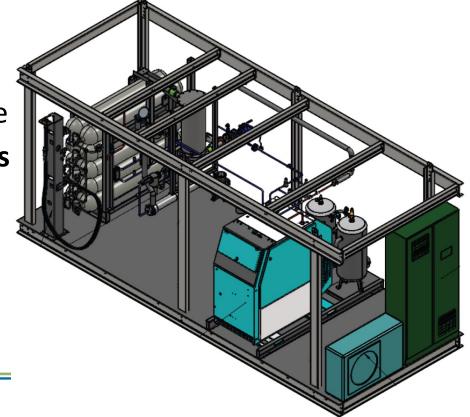
- (i) improve the pre-treatment process
- (ii) Reduce energy consumption of upgrading line using advanced filters(low pressure membrane), higher efficiency compressor (hybrid) and cooler and membranes

(iii) adjust the technology for small and medium farm sizes


• Status: plant finally developed/engineered/running, Monitoring- and Demonstration operation with a BioCNG Farm Tractor ongoing



Biomethane as fuel for On-farm tractor propulsion


- Especially for agricultural livestock farms, off-grid biogas upgrading (6 and 12 Nm³ h⁻¹)
- Fuel production from biogas predestined for energy use in agriculture
- For the economic viability of micro-treatment plants, technically simplified plant concepts must be developed
- low specific investment costs and at the same time to guarantee the safety requirements

Technical characteristics of Micro-Bio-CNG plant

- plant operates as a fully closed cycle process
- 10-12 Nm³ h-1 raw biogas dewatered, oil separated, NH₃ separated and fine particles separated
- 4-5 of the 12 Nm³ h⁻¹ are concentrated to a CH₄ content of around 97%.
- 4-5 Nm³ h⁻¹ are highly compressed to CNG with the same compressor (@~250bar)
- off-gas flow with about 80% CO₂ content and the rest CH₄ is completely recycled back into the biogas storage
- system components are thermally insulated and zones at risk of frost are permanently protected
- BioCNG filling process takes about 5 minutes

Novelty of Micro-Bio-CNG plant

- very simplified and compact design in terms of compression
- 1-stage (single membrane) process for CH₄ concentration instead of a multi-stage
- no direct emissions at the Biomethane-, and compressed to Bio-CNG plant
- hybrid compressor > gas permeation [>95% CH₄ biogas] and CNG high compression can be managed with just one compressor block
- 20ft open frame >>no closed zones/rooms where explosive zones can develop

Custom-built hybrid compressor

Point of discharge of the gas for the stepintermediate biogas purification and return to compressor stage 2

Key Performance Indicators of the BioCNG pilot plant (first year of monitoring)

10-12 Nm³ h-1 raw biogas plant at LVAT pilot farm – running since 07/2023

key indicator	x	SD	n
specific energy consumption [kWh _{el} /Nm ³ BioCNG]	0,94	0,15	14896
separation pressure hollow fiber membrane [bar]	7,83	0,47	18771
separation temperature hollow fiber membrane [°C]	57,44	2,49	18771
methane concentration [%]	96,75	1,28	29771
start-up time until BioCNG production OK [min]	26,78	5,49	9

Full cost calculation €/kg BioCNG fuel

- Production costs for agricultural BioCNG
 - Biogas costs of 0.5 €/kgCH₄, electricity costs of 0.2 €/kWh and a depreciation period of 10 years assumed
 - 10 m3/h plant (built) 2.25 €/kg BioCNG fuel
 - 35 m3/h plant (built) 1.51 €/kg BioCNG fuel
 - 65 m3/h plant (planned) 1.37 €/kg BioCNG fuel

24/9/24

Defossilization of agriculture and forestry

- Key figures that illustrate the enormous potential of this technological solution for defossilizing agriculture and forestry
 - 1 cow = 289 Nm^{3*} biomethane / year (*FNR) = 208 kg bio-CNG/ year = 4000 car kilometers
 - 1 tonne of wheat straw = 250 Nm^{3*} biomethane (*Atres Group) = 180 kg bio-CNG/ = 3600 car kilometres

24/9/24

Defossilization of agriculture and forestry

- As a non-fossil fuel, bio-CNG can also be used efficiently in tractors and trucks, thus making a significant contribution to fuel self-sufficiency in agriculture.
 - 1ha ploughing with rotary plough = 25.52kg Bio-CNG (*KTBL; Conv.F. -Diesel/CNG 1.25)
 - With the biomethane (CNG) from the manure of <u>a cow (*FNR)</u> more than <u>8 ha of ploughing</u>
 <u>can</u> be carried out annually with a rotary plough (*KTBL; Conv.F. -Diesel/CNG 1.25)

24/9/24

Conclusion and Outlook

- Technology offers the opportunity to de-fossilize agriculture and forestry
- Farms can produce fuel for tractors from their own field residues and livestock manure in an economical way
- Brings **CAPEX** and **OPEX** costs for these very small plants to a **competitive level**
- Small fleet sizes of 3 tractors to 10 cars feasible
- Easy scalable to 10, 20 and 30+ kg BioCNG h⁻¹ within the designed 20ft frame
- Economics: goals < €1.8 €total (OPEX + CAPEX) per kg of BioCNG; < 10 years amortization period for the system
- <u>Necessity</u> to make GHG quotas monetarily usable also for the operators of such small biofuel plants

Thank You!

