An integrated renewable energy system for the decarbonization of a laying hens farm in Central Greece

Tyris D.¹, **Costantino A.**², Goliomytis M.³, Bakalis P.⁴, Gkountas A.⁴, Meramveliotakis G⁵, Manolakos D.¹

¹Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece

> ²Institute of Animal Science and Technology, Universitat Politècnica de València, València, Spain

³Department of Animal Science, Agricultural University of Athens, Athens, Greece

⁴PSYCTOTHERM, Piraeus, Greece

⁵THERMODRAFT IKE, Piraeus, Greece

AllA Mid-Term Conference – Padova 17-19 June 2024 Biosystems engineering promoting resilience to climate change

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

SUSTAINABLE BOUNDLESS INNOVATION

Energy use in livestock buildings

Intensive livestock systems

Feed 1.3 billion people
Animal-derived food

- High energy consumptionMainly rely on fossil fuels
- High GHG emissions

- Higher energy efficiency
- Decarbonization

- Climate resilience
- Improved animal welfare

The RES4LIVE project

Objective:

Analyzing the actual performance of a heat pump integrated in a livestock house to understand the potential of this technology in increasing the sustainability of livestock systems.

The case study: the AUA hen house

The hen house of Agricultural University of Athens (AUA):

- Education & Research
- 45 m² of floor area
- Capacity for ~400 hens
- 3-tier enriched colonies
- Founded in 1950s

The case study: the Heat Pump (HP)

Main features of the HP:

- Air-to-air HP, screw-type compressor
- 10 kW of nominal cooling capacity (R407C)
- Heat recovery system
- Auxiliary fans + water pumps
- \bullet Integration with a 9 kW_p photovoltaic system

The acquired dataset

Monitored parameters:

- Indoor air temperature and relative humidity
- Gas concentrations (CO₂ and NH₃)
- PV power generation
- Power consumption
- Refrigerant pressures

Inlet fan Exhaust fan Dry cooler fan Water pumps LEDs

The acquired dataset

Monitored parameters:

- Indoor air temperature and relative humidity
- Gas concentrations (CO₂ and NH₃)
- PV power generation
- Power consumption
- Refrigerant pressures

Results: HP operation during summer

- Acceptable indoor air temperature even during heat waves
- Undersized cooling capacity: extreme weather + adult birds
- Suboptimal defrost cycle programming

Results: HP operation during summer

AllA Mid-Term Conference – Padova 17-19 June 2024

Results: HP operation during winter

- Indoor air temperature mostly within the deadband
- Oscillation of indoor air temperature affects HP performance
- COP always exceeded 3

Results: Indoor Air Quality

- CO₂ may represent an issue in commercial farms
- High concentration of particulate (dusty environment)

Need to identify solutions

AllA Mid-Term Conference – Padova 17-19 June 2024

Results: energy consumption

- Analyses over 30 days
- Higher energy consumption in summer: compressor operation
- Greater exhaust fan during wintertime

Dry cooler fan

69 kWh

(2.9%)

Results: RES integration

0000 © S

- Summer (30 days):
 909 kWh generated from PV
- 22.5% of Self-Sufficiency
- 99.7% of Self-Consumption
- Avoided GHGs: 688 kg_{CO2-eq}

Winter (30 days):

- 483 kWh generated from PV
- 20.2% of Self-Sufficiency
- 85.6% of Self-Consumption
- Avoided GHGs: 314 kg_{CO2-eq}

Results: RES integration

Summer (30 days):

- 909 kWh generated from PV
- 22.5% of Self-Sufficiency
- 99.7% of Self-Consumption
- Avoided GHGs: 688 kg_{CO2-eq}

Winter (30 days):

20.2% of Self-Sufficiency

483 kWh generated from PV

85.6% of Self-Consumption

• Avoided GHGs: 314 kg_{CO2-eq}

Grid electricity (nRES) PV solar energy

Grid electricity (RES) Aerothermal energy

Calculations performed considering Greek national energy mix.

Conclusions

The heat pump maintained the adequate indoor air temperature for hen farming, even in presence of **heat waves**.

The heat pump operation was satisfactory, with a **SCOP** of 2.4 in summer and 3.7 in winter, respectively.

The integration with a PV system avoided the emissions of around 1000 kg_{CO2-eq} over two months.

The experimental activity pointed out possible issues related to Indoor Air Quality.

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101000785.

Andrea Costantino was supported by a "Juan de la Cierva" Fellowship.

Grant JDC2022-049782-I funded by MICIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.

Andrea Costantino

Postdoctoral Researcher

Institute of Animal Science and Technology (ICTA) Universitat Politécnica de Valéncia

acostan@upvnet.upv.es

