ECPLF 2024

Heating Strategies in Farrowing Compartments: Exploring Configurational Options and the Feasibility of Solar Systems Integration

Kathy Oi In Put

Research Team Sustainable Thermo-Fluid Energy Systems, UGent Precision Livestock Farming team, ILVO

INTRODUCTION

Thermoneutral Zone

Researches	Thermony		Piglets Thermoneutral conditions		
Bjerg et al. (2020)	15°C - 2	no de Haute anake	<u>ሪ</u>	-	
Malmkvist et al. (2012)	15°C - 2	er de Metrik mieric of sows) -	-	
Hörtenhuber et al. (2020)	19°C - 22°C	During giving birth and lactation.	18°C - 35°C	Vary from different stage of piglets.	
Smith, Ramirez, and Hoff (2021)	Around 18°C	-	32°C - 35°C	For new-born piglet	

INTRODUCTION

Heating Devices

Heat lamp with dimmer

Floor heating

Controlled heat lamp with covering

RESEARCH GOALS

- 2. Energy efficiency
- 3. Energy cost

GOALS 1

Feasibility of transiting to solar and storage system in conjunction with various heating systems

Business Model: CAPEX, OPEX, ROI, payback time, etc.

GOALS 2

3

EXPERIMENT METHODOLOGY

• Scenario 1 (S1): Floor heating & manual heat lamp (ON, half-power, OFF)

 Scenario 2 (S2): Controlled heat lamp (Automatic power adjustment from 0% to 100%)

GHENT

UNIVERSITY

Flanders Research Institute for

Agriculture, Fisheries and Food

X RES4LIVE

ENERGY SMART LIVESTOCK FARMING

TOWARDS ZERO FOSSIL FUEL CONSUMPTION

• Scenario 3 (S3): Controlled heat lamp & covering

EXPERIMENT METHODOLOGY Materials and Equipment

Comfort conditions

Temperature sensors

 Ambient temperature of sows & piglets

Energy consumption

Energy meter

Electricity consumption from the heat lamps

Flow rate meter

Energy consumption from floor heating

EXPERIMENT METHODOLOGY

SOWS

- Similar temperature trends
- Able to create a localised heating environment for piglets

- Relative low temperature
- Heat loss

EXPERIMENT RESULTS & DISCUSSION Comfort Condition

SOWS

Multiple peaks: greater variability in temperature.

Unimodal curve: less variability in temperature.

Unimodal distribution: less variability in temperature.

27°C - 35°C

35.0

32.5

CONCLUSION (EXPERIMENT)

- The standard setup.
- Suitable heat for piglet.

- Higher heat loss, less energy efficient.
- Higher energy cost.

- Ability in creating localized heating for piglets while minimizing impact on sows.
- 25% more cost-effective than S1.

RESEARCH GOALS

Exploring the feasibility renewables transition:

PVT/PV system

Storage system

Feasibility of transiting to solar and storage system in conjunction with various heating systems

> Business Model: CAPEX, OPEX, NPV, etc.

GOALS 2

MODELLING METHODOLOGY

• DesignBuilder

Simulating yearly profile: Temperature and energy consumption

• Experimental data:

- ✓ Farrowing schedule
- \checkmark Energy consumption pattern
- \checkmark Ventilation rate, etc.

• External factors:

- \checkmark Weather conditions
- \checkmark Building materials & thermal properties
- \checkmark occupancy density, etc.

MODELLING BUSINESS MODEL S1HP

ò

25 kWh

100

200

Battery capacity [kWh]

300

400

Total energy cost in relation to different combination of installations and battery capacity

500

S3

Total energy cost in relation to different combination of installations and battery capacity

100

200

Battery capacity [kWh]

ò

17 kWh

14

500

400

300

CONCLUSION (MODELLING)

- The need for stable renewable systems.
- Explore combination with the solar systems and others.

Future Works

- Experimental scope for diverse heating configurations.
- More experiments to enhance the database for improved design of sustainable heating solutions for pig farming.

i)	S1HP		S3		
Yearly profile	S1 HP		\$3		
Yearly electricity consumption	19,842.97	kWh	9,762.96	kWh	
Before installing the storage	system (Max. solar in	stallation)			
Number of panels	45	panels	23	panels	
Total production	19,842.97	kWh	9,762.96	kWh	
Electricity demand from the grid	13,031.34	kWh	6,264.99	kWh	
Own consumption	6,780.95	kWh	3,448.36	kWh	
Self-consumption ratio	34.17	%	35.32	%	
Self-sufficiency ratio	34.17	%	35.32	%	
Net present value (NPV)	-16,605.64	€	-8,008.36	€	
Payback time	47.30	years	36.69	years	
After installing the storage sy	ystem				
Number of panels	25	panels	15	panels	
Size of battery	25	kWh	17	kWh	
Total production	11,223.47	kWh	6,734.08	kWh	
Electricity demand from grid	11,026.65	kWh Reduce kWh	d 2004.69 4,733.47	kWh Reduced kWh	1531.5
Own consumption	8,816.32	kWh	5,029.49	kWh	
Self-consumption ratio	78.55	%	74.69	%	
Self-sufficiency ratio	44.43	%	51.52	%	
Net present value (NPV)	-16,831.60	€	-5,466.87	€	

Contact

Kathy.Put@UGent.be

Ghent University

Department of Electromechanical, Systems and Metal Engineering *Research Team Sustainable Thermo-Fluid Energy Systems (STFES)* Technicum Blok 4, Sint-Pietersnieuwstraat 41, B-9000 Ghent, BE

Kathy.Put@ilvo.vlaanderen.be

Flanders research Institute for Agriculture, Fisheries and Food
Technology and Food Science Department *PLF team*Burg. Van Gansberghelaan 115 bus 1, 9820 Merelbeke, BE