

COST-EFFECTIVE IMPLEMENTATION OF RENEWABLE ENERGY SOURCES IN LIVESTOCK BARNS

23/11/2022

Paper by: Willem Faes, prof. Steven Lecompte, Jarissa Maselyne

Speaker: Manon Everaert

RES4LIVE PROJECT

- Renewable Energy Sources for LIVE stock
- 17 partners from 8 countries
- October 2020 2024
- Horizon 2020

RES4LIVE PROJECT

- Renewable Energy Sources for LIVEstock
- 17 partners from 8 countries
- October 2020 2024
- Horizon 2020

Policy Social Stakeholders Engagement

https://res4live.eu/

RES4LIVE: THE ISSUE

Greenhouse gas emissions by sector in the EU (2019)

https://www.europarl.europa.eu/

www.res4live.eu

RES4LIVE: THE ISSUE

Greenhouse gas emissions by sector in the EU (2019)

RES4LIVE: PILOT FARMS

Pig meat

Cow milk

Chicken meat

Pig meat

RES4LIVE: PILOT FARMS

OUR PURPOSE WITHIN RES4LIVE

- 1. Simulation
 - Insert RES
 - Life-cycle costs (LCC) and greenhouse gas emissions (GHG)
- 2. Apply to pig farm in Belgium

- 3. Test and demonstrate
- 4. Extend to other (pilot) farms

ENERGY DEMAND IN PIG FARMING

- Heating
 - Air
 - Floor
 - Sanitary
 - Heat canon

- Electricity
 - Feeding
 - Ventilation
 - Lighting
 - Heating lamps

- Solar energy
 - Photovoltaic (PV)
 - Solar thermal (ST)
 - PV thermal (PVT)

- Solar energy
 - Photovoltaic (PV)
 - Solar thermal (ST)
 - PV thermal (PVT)
- Wind energy

- Solar energy
 - Photovoltaic (PV)
 - Solar thermal (ST)
 - PV thermal (PVT)
- Wind energy
- Energy collectors

- Solar energy
 - Photovoltaic (PV)
 - Solar thermal (ST)
 - PV thermal (PVT)
- Wind energy
- Energy collectors
- Heat pumps

MODELLING APPROACH FOR ONE FARM

- 1. Steady-state model (Python)
- Calculate current energy balance
 - Associated cost balance
 - GHG emissions
- 3. Implementation of RES with inputs
 - Energy demand
 - Local weather data

EVALUATION CRITERIA

Life-cycle cost (LCC) over 20 years

•
$$LCC = IC_0 + \sum_{i=0}^{20} \frac{EC_i + IC_i}{(1+r)^i}$$

IC Investment cost

EC Energy cost

Discount rate

EVALUATION CRITERIA

- Life-cycle cost (LCC) over 20 years
 - $LCC = IC_0 + \sum_{i=0}^{20} \frac{EC_i + IC_i}{(1+r)^i}$

IC Investment cost

EC Energy cost

Discount rate

- Fuel combustion
- Natural gas grid
- Emissions related to electricity from grid

https://ec.europa.eu/eurostat/

• Boiler: € 15k

• Wind turbines: € 60k per Unit

• Boiler: € 15k

• Wind turbines: € 60k per Unit

• Boiler: € 15k

Wind turbines: € 60k per Unit

• Boiler: € 15k

• Wind turbines: € 60k per Unit

VARKENSCAMPUS (BELGIUM)

VARKENSCAMPUS

- Ghent, Belgium
- ~ 1000 pigs
 - 110 sows
 - 336 piglets
 - 463 fattening pigs

VARKENSCAMPUS

- Ghent, Belgium
- ~ 1000 pigs
 - 110 sows
 - 336 piglets
 - 463 fattening pigs
- Semi-closed-cycle farm

TYPICAL ENERGY CONSUMPTION

- Heating
 - Natural gas (220 MWh a year)
 - Fuel oil (950 I a year)
- Electricity (115 MWh a year)

TYPICAL ENERGY CONSUMPTION

- Heating
 - Natural gas (220 MWh a year)
 - Fuel oil (950 l a year)
- Electricity (115 MWh a year)

- Input parameters
 - Energy demand profile for reference barn

- Input parameters
 - Energy demand profile for reference barn
 - Local weather data

- Input parameters
 - Energy demand profile for reference barn
 - Local weather data
- Base parameters
 - Timestep
 - Current energy costs
 - Lifetimes and maintenance costs
 - Machine properties

- Input parameters
 - Energy demand profile for reference barn
 - Local weather data
- Base parameters
 - Timestep
 - Current energy costs
 - Lifetimes and maintenance costs
 - Machine properties

Parameter	Unit	Value
Simulation time step	hour	1
Simulated period	hour	8760
Electricity cost	€/kWh	0.28
Electricity injection fee	€/kWh	0.08
Gas cost	€/kWh	0.1
GHG emissions elec. grid	kg/kWh	0.22
GHG emissions gas grid	kg/kWh	0.24
LCC period	year	20
LCC discount rate	%	6
Boiler efficiency	%	95
Low temperature heating	°C	40
High temperature heating	°C	60
Low temp. nom. COP	-	5
High temp. nom. COP	-	3.5
COP nominal temperature	°C	17
Initial battery charge	kWh	0
Initial thermal storage temp.	°C	40
Max. thermal storage temp.	°C	90
Boiler life span	year	15
Heat pump life span	year	20
PV panels life span	year	25
Solar collectors life span	year	20
PVT panels life span	year	20
Wind turbine life span	year	20
Electrical battery life span	year	8
Thermal storage tank life span	year	20

Electricity flow

Heat flow

SOME WARM-UP SCENARIOS

Scenario 1 (original)

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

SOME WARM-UP SCENARIOS

Scenario 1 (original)

Electricity flow
Heat flow

Scenario 2

Scenario 3

+

Scenario 4

Scenario 5

Relative LCC and GHG w.r.t. original case

Scenario 6

www.res4live.eu

RES EXPLORATION

Design space exploration

Parameter	Possible values	Count
Heating system	• Gas boiler (60 kW)	
	 High temperature heat pump (60 kW) 	3
	 High temperature heat pump (55 kW) + low temperature heat pump (15 kW) 	
PV panel area (m²)	0, 10, 50, 100, 500, 1000, 2500, 5000	8
Solar collector area (m²)	0, 10, 50, 100, 500, 1000, 2500, 5000	8
PVT panel area (m²)	0, 10, 50, 100, 500, 1000, 2500, 5000	8
Battery capacity (kWh)	0, 10, 20, 50, 100, 200	6
Thermal storage volume (I)	0, 250, 500, 1000, 2500, 5000	6
Wind turbine nominal power (kW)	0, 15, 30	3

All 165 888 possible combinations simulated

DESIGN SPACE EVALUATION

DESIGN SPACE EVALUATION

PARETO OPTIMIZATION

PARETO OPTIMIZATION

CONCLUSION

- Potential to reduce greenhouse gas emissions
- Switch to heat pump
- Optimal use of roof area
 - No heat pump: thermal solar collectors
 - With heat pump: PV panels
- Solar energy > small wind turbine
- Thermal storage > electrical storage

www.res4live.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.101000785

CONTACT INFORMATION

Instituut voor Landbouw-, Visserij- en Voedingsonderzoek https://res4live.eu/public-deliverables/

M.Sc. Manon Everaert

- Manon.Everaert@UGent.be
- Manon.Evereart@ilvo.vlaanderen.be

Prof. Dr. Ir. Steven Lecompte

Steven.Lecompte@UGent.be

Dr. Ir. Jarissa Maselyne

Jarissa.Maselyne@ilvo.vlaanderen.be

NUMBERS OF CURRENT INSTALLATION

Initial cost: €15 000 (only gas boiler)

LCC over 20 years: € 632 782,6

Yearly energy cost: € 51 055

Gas: € 21 204

Electricity: € 29 851

Yearly GHG emissions: 77,1 ton

Grid electricity: 23,5 ton

Fuel combustion: 53,6 ton

